Progress in ITER ECE diagnostic design and integration

Author:

Liu Y.,Udintsev V.S.,Danani S.,Paraiso G.,Taylor G.,Austin M.E.,Basile A.,Beno J.H.,Bunkowski B.,Feder R.,Giacomin T.,Guirao J.,Houshmandyar S.,Huang H.,Hubbard A.E.,Hughes S.,Jha S.,Khodak A.,Kumar R.,Kumar S.,Kumar V.,Maquet P.,Nazare C.,Neilson H.,Ouroua A.,Pak S.,Pandya H.K.B.,Penney C.,Phillips P.E.,Pish S.,Poissy J.,Rowan W.L.,Saxena A.,Schneider M.,Strank S.M.,Thomas S.,Vayakis G.,Waelbroeck F.L.,Walsh M.J.,Worth L.

Abstract

Abstract The ITER electron cyclotron emission (ECE) diagnostic system has primary roles in providing measurements of the core electron temperature profile and the electron temperature fluctuation associated with the neoclassical tearing modes. The ITER ECE system includes a radial and oblique line-of-sight. Four 43-meter long low-loss transmission lines (TLs) are designed to transmit millimeter wave power in the frequency range of 70–1000 GHz in both X- and O-mode polarization from the port plug to the ECE instrumentation room in the diagnostic building. The measurement instrumentation includes two Fourier transform spectrometer (FTS) systems and two radiometer systems. The Indian Domestic Agency (IN-DA) and United States Domestic Agency share the responsibility. The IN-DA scope excluding instrumentation and control has passed its preliminary design review and is progressing towards the final design review (FDR). In parallel, the diagnostic integration in different areas is ongoing. Several captive components for the TLs have passed FDR and will be manufactured for installation in the tokamak building soon. A peer review meeting has been held on the prototype hot calibration source, and its integration and new thermal analysis in the diagnostic shield module are continuing. A prototype TL is being tested. A prototype polarizing Martin-Puplett type FTS, operating in the frequency range 70–1000 GHz, features an in-vacuo fast scanning mechanism and a cryo-cooled dual-channel THz detector system. Its performance has been assessed in detail against ITER requirements.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3