Comparison of point cloud and image-based models for calorimeter fast simulation

Author:

Torales Acosta FernandoORCID,Mikuni ViniciusORCID,Nachman BenjaminORCID,Arratia MiguelORCID,Karki BishnuORCID,Milton RyanORCID,Karande PiyushORCID,Angerami AaronORCID

Abstract

Abstract Score based generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets. Recent advances in generative models have used images with 3D voxels to represent and model complex calorimeter showers. Point clouds, however, are likely a more natural representation of calorimeter showers, particularly in calorimeters with high granularity. Point clouds preserve all of the information of the original simulation, more naturally deal with sparse datasets, and can be implemented with more compact models and data files. In this work, two state-of-the-art score based models are trained on the same set of calorimeter simulation and directly compared.

Publisher

IOP Publishing

Reference60 articles.

1. GEANT4–a simulation toolkit;GEANT4 Collaboration;Nucl. Instrum. Meth. A,2003

2. Geant4 developments and applications;Allison;IEEE Trans. Nucl. Sci.,2006

3. Recent developments in Geant4;Allison;Nucl. Instrum. Meth. A,2016

4. Generative Adversarial Networks;Goodfellow,2014

5. Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters;Paganini;Phys. Rev. Lett.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3