Author:
Deng B.,Liu Z.,Yang H.,Zhang Q.,Deng H.,Liu B.
Abstract
Abstract
The X-ray free-electron laser (XFEL) is one of the most powerful tools in scientific frontiers due to its ultra-fast pulse duration and high peak brightness. The non-invasive, energy spectrum monitoring of XFEL pulses is an emerging demand to enhance its operation. This work proposes a non-invasive photo-electron spectrometer equipped with four time-of-flight assemblies to monitor the spectrum of high-repetition-rate XFEL. A comprehensive numerical model is established for start-to-end simulations of the instrumentation, through which the performance of the instrumentation is evaluated and optimized. The simulation results suggest that an energy resolution of 0.05 eV can be fully feasible for XFEL pulses around 1 keV. The position and angular response of the TOF assembly are also discussed, which indicates the transverse radius of XFEL pulses is smaller than 1 mm and that the collecting angle of the design is suitable for monitoring.
Subject
Mathematical Physics,Instrumentation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献