Characterisation of the performance of p-type Si detectors for hard X-ray spectroscopy

Author:

Cline B.D.,Bullough M.,Richardson K.,Thorpe H.,Veale M.C.,Wilson M.D.

Abstract

Abstract High-density compound semiconductors with sufficiently-high photon attenuations, such as CdZnTe, are required for the detection of the high-energy X-rays (>20 keV), typical to applications of the HEXITEC ASIC. However, in low-energy applications (2–20 keV), the lower electron-hole-pair generation energy of Si offers the potential of improved spectroscopic resolution. Si-based pixelated X-ray sensors are typically based on n-type material where holes are the carrier that form the signal measured on the pixels. However, the incorporation of p-type dopants into the material enables these sensors to be operated effectively in electron readout. This is similar to CdZnTe sensors, where electrons are measured by the pixels. Critically, this allows a single electron-sensitive chip to be utilised for low- and high-energy measurements. Presented in this paper are the results of the spectroscopic characterisation of four p-type-Si sensors (two 300 μm and two 500 μm thick), manufactured by Micron Semiconductors Ltd., and flip-chip bonded to the HEXITEC ASIC. At 13.94 keV all tested devices displayed average FWHM of <540 eV and the average ASIC-limited FWHM of 489 ± 75 eV measured for a single 300 μm module represents the highest resolution measured with the HEXITEC ASIC. Results also show very low pixel-to-pixel variations in the measured FWHM demonstrating the excellent spatial uniformity of these devices, and a study into the temporal stability of a single detector over a ∼30 h period demonstrated negligible changes in spectroscopic performance.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3