The SPIRAL1 charge breeder: key points for a high-performance 1+ beam injection

Author:

Maunoury L.,Kamalou O.,Cam J.F.,Damoy S.,Delahaye P.,Dubois M.,Frigot R.,Hormigos S.,Vandamme C.

Abstract

Abstract The SPIRAL1 charge breeder is now under operation. Radioactive beam has already been delivered [1] to physicists for performing experiments. Although charge breeding efficiencies demonstrated high performances for stable ion beams, efficiencies regarding radioactive ion beams were found to be lower than expected in the first experiment. The beam optics, prior to the injection of the 1+ ions into the SPIRAL1 charge breeder, is of prime importance [2] for reaching such high efficiencies. Moreover, the intensities of the radioactive ion beams are so low that it is very difficult to tune the charge breeder. The tuning of the charge breeder for radioactive ion beams requires a particular procedure often referred to as “blind tuning”. A stable beam with a similar Brho (within a few percent) is required to find the set of optic parameters before tuning the radioactive ion beam. Hence, it has been decided to focus our efforts on this procedure in order to get control of the 1+ beam optics leading to high charge breeding efficiencies whatever the 1+ mass, energy and Target Ion Source System (TISS) used. Knowing that each TISS provides ion beams with a specific energy spread ΔE, and given that the energy acceptance window of the charge breeder is rather narrow, this parameter must also play an important role in determining the overall charge breeding efficiency. This contribution will show the strategy undertaken to overcome the difficulties encountered in the charge breeding tuning with 1+ radioactive ion beams from the different ion sources, and the results already obtained. A series of experiments have been done to record beam parameters as well as beam profiles in two modes: “shooting through” and 1+/N+. Simulations have been developed to replicate the measurements: for this purpose a combination of SIMION and TraceWin software was used. The final goal is to define a set of beam optics reliable enough for operation covering a large range of 1+ mass, energy and emittance; applying the resulting set of parameters must eventually allow to approach the expected optimal charge breeder performances while producing a radioactive ion beam.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference14 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The longitudinal energy spread of ion beams extracted from an electron cyclotron resonance ion source;Journal of Instrumentation;2023-04-01

2. Charge breeder of Electron Cyclotron Resonance type: A new application to produce intense metal ion beams for accelerators;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-10

3. Radioactive and Stable Ion Beam production at GANIL;Journal of Physics: Conference Series;2022-04-01

4. Charge Breeder at GANIL: metal charge-bred elements;Journal of Physics: Conference Series;2022-04-01

5. Charge breeders: Development of diagnostic tools to probe the underlying physics;Review of Scientific Instruments;2022-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3