The longitudinal energy spread of ion beams extracted from an electron cyclotron resonance ion source

Author:

Angot J.,Tarvainen O.,Chauveau P.,Kosonen S.T.,Kalvas T.,Thuillier T.,Migliore M.,Maunoury L.

Abstract

Abstract We present a study of factors affecting the energy spread of ion beams extracted from a Charge Breeder Electron Cyclotron Resonance Ion Source (CB-ECRIS). The comprehensive simulations, supported by experiments with a Retarding Field Analyser (RFA), reveal that the longitudinal and transverse energy spread of the extracted beams are strongly affected by the electrostatic focusing effects, namely the extraction geometry and plasma beam boundary, to the extent that the electrostatic effects dominate over the magnetic field induced rotation of the beam or the effect of plasma potential and ion temperature. The dominance of the electrostatic focusing effect over the magnetic field induced rotation complicates parametric studies of the transverse emittance as a function of the magnetic field strength, and comparison of emittance values obtained with different ion sources having different extraction designs. Our results demonstrate that the full ion beam energy spread, relevant for the downstream accelerator, can be measured with the RFA only when all ions are collected. On the contrary, studying the effect of plasma properties (plasma potential and ion temperature) on the longitudinal energy spread requires heavy collimation of the beam accepting only ions near the symmetry axis of the beam for which the electrostatic and magnetic effects are suppressed. As the extraction system of the CB-ECRIS is similar to a conventional ECRIS, the conclusions of the study can be generalised to apply for all high charge state ECR ion sources. Finally, we present the results of systematic plasma potential measurements of the Phoenix-type CB-ECRIS at LPSC, varying the source potential, the microwave power and the axial magnetic field srength. It was observed that the plasma potential increases with the extraction magnetic field and the microwave power.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3