Magnetohydrodynamic Electroosmotic Flow with Patterned Charged Surface and Modulated Wettability in a Parallel Plate Microchannel*

Author:

Hao Na,Jian Yong-Jun

Abstract

Abstract This paper investigates the magnetohydrodynamic (MHD) electroosmotic flow (EOF) of Newtonian fluid through a zeta potential modulated parallel plate microchannel with patterned hydrodynamic slippage. The driven mechanism of the flow originates from the Lorentz force generated by the interaction of externally imposed lateral electric field Ey and vertical magnetic field Bz and electric field force produced by an externally applied electric field Ex . It is assumed that the wall zeta potential and the slip length are periodic functions of axial coordinate x, an analytical solution of the stream function is achieved by utilizing the method of separation of variables and perturbation expansion. The pictures of streamlines are plotted and the vortex configurations produced in flow field due to patterned wall potential and hydrodynamic slippage are discussed. Based on the stream function, the velocity field and volume flow rate are obtained, which are greatly depend on some dimensionless parameters, such as slip length ls , electrokinetic width λ, the amplitude δ of the patterned slip length, the amplitude m of the modulated zeta potential and Hartmann number Ha. The variations of velocity and volume flow rate with these dimensionless parameters are discussed in details. These theoretical results may provide some guidance effectively operating micropump in practical nanofluidic applications.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3