A novel approach for EMHD Williamson nanofluid over nonlinear sheet with double stratification and Ohmic dissipation

Author:

Bilal Muhammad1ORCID,Ramzan Muhammad2ORCID,Mehmood Yasir3,Sajid Tanveer4,Shah Sajid5,Malik M. Y.6

Affiliation:

1. The University of Lahore, Gujrat Campus, Pakistan

2. Bahria University, Islamabad, Pakistan

3. The University of Lahore, Sarghoda Campus, Pakistan

4. Capital University of Science and Technology, Islamabad, Pakistan

5. National University of Modern Language, Islamabad, Pakistan

6. Department of Mathematics, College of Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia

Abstract

The current article highlights the non-Newtonian Williamson nanofluid with electro-magnetohydrodynamic (EMHD) flow over a nonlinear expanding sheet. Thermal and solutal stratification effects are considered due to the higher temperature difference and the impact of variable viscosity along with Ohmic dissipation is also incorporated. Transformation is applied for the conversion of physical partial differential equations (PDEs) into non-dimensional higher order nonlinear ordinary differential equations (ODEs). A well-known analytical approach known as the homotopy analysis method (HAM) is effectively applied to solve the differential equations. Different non-dimensional emerging parameters such as Weissenberg and Hartman number, Brownian motion and stratification parameters, stretching index, viscosity parameter, and Lewis number are used to check their impacts on velocity, concentration, and temperature profiles. To acquire the optimal solution through HAM, [Formula: see text] -curves are drawn. In the tabulated form, the numerical values for the non-dimensional Nusselt number and skin friction are arranged.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3