Phenomenology and scaling of optimal flapping wing kinematics

Author:

Gehrke AlexanderORCID,Mulleners KarenORCID

Abstract

Abstract Biological flapping wing fliers operate efficiently and robustly in a wide range of flight conditions and are a great source of inspiration to engineers. The unsteady aerodynamics of flapping wing flight are dominated by large-scale vortical structures that augment the aerodynamic performance but are sensitive to minor changes in the wing actuation. We experimentally optimise the pitch angle kinematics of a flapping wing system in hover to maximise the stroke average lift and hovering efficiency with the help of an evolutionary algorithm and in situ force and torque measurements at the wing root. Additional flow field measurements are conducted to link the vortical flow structures to the aerodynamic performance for the Pareto-optimal kinematics. The optimised pitch angle profiles yielding maximum stroke-average lift coefficients have trapezoidal shapes and high average angles of attack. These kinematics create strong leading-edge vortices early in the cycle which enhance the force production on the wing. The most efficient pitch angle kinematics resemble sinusoidal evolutions and have lower average angles of attack. The leading-edge vortex grows slower and stays close-bound to the wing throughout the majority of the stroke-cycle. This requires less aerodynamic power and increases the hovering efficiency by 93% but sacrifices 43% of the maximum lift in the process. In all cases, a leading-edge vortex is fed by vorticity through the leading edge shear layer which makes the shear layer velocity a good indicator for the growth of the vortex and its impact on the aerodynamic forces. We estimate the shear layer velocity at the leading edge solely from the input kinematics and use it to scale the average and the time-resolved evolution of the circulation and the aerodynamic forces. The experimental data agree well with the shear layer velocity prediction, making it a promising metric to quantify and predict the aerodynamic performance of the flapping wing hovering motion.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference57 articles.

1. Leading-edge vortices in insect flight;Ellington;Nature,1996

2. The control of flight force by a flapping wing: lift and drag production;Sane;J. Exp. Biol.,2001

3. The aerodynamic effects of wing-wing interaction in flapping insect wings;Lehmann;J. Exp. Biol.,2005

4. Flapping wing aerodynamics: from insects to vertebrates;Chin;J. Exp. Biol.,2016

5. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;Keennon,2012

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3