Discovering optimal flapping wing kinematics using active deep learning

Author:

Corban BaptisteORCID,Bauerheim Michael,Jardin ThierryORCID

Abstract

This paper focuses on the discovery of optimal flapping wing kinematics using a deep learning surrogate model for unsteady aerodynamics and multi-objective optimisation. First, a surrogate model of the unsteady forces experienced by a 3-D flapping wing is built, based on deep neural networks. The model is trained on a dataset of randomly generated kinematics simulated using direct numerical simulation (DNS). Once trained, the neural networks can quickly predict the unsteady lift and torques experienced by the wing, using sparse information on the kinematics. This fast surrogate model allows multi-objective optimisation to be performed. The resulting Pareto front consists of new kinematics that may be very different from the kinematics of the initial dataset. A few arbitrarily chosen kinematics on the Pareto front are thus simulated using DNS and used to enhance the database. The new dataset is used to train again the networks, and this active deep learning/optimisation framework is performed until convergence, obtained after only two iterations. Overall, this method reduced the cost of optimisation by 83 %. Results reveal two distinct families of motions. Kinematics promoting high efficiency are characterised by large stroke amplitudes and relatively low angles of attack, as observed for fruit flies, honeybees or hawkmoths. For those, lift production is driven by quasi-steady effects and the formation of a stable leading edge vortex. Kinematics promoting high lift are characterised by small stroke amplitudes and high angles of attack, reminiscent of mosquitoes. Lift production is driven by the rapid generation of vorticity at the trailing edge.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3