Effects of tongue hair flexural deformation on viscous fluid transport by bees

Author:

Wang BoORCID,Yang Jinzhao,Zhang JieORCID,Ke Zetao,Zhang Huafang,Yang YunqiangORCID,Wu JianingORCID

Abstract

Abstract A bee’s tongue is coated in dynamic hairs that gradually unfold to entrain the viscid nectar, during which hairs inevitably deflect as a result of fluid drag. The hair deflection induced decline in nectar capture rate may be a coupled elastoviscous problem and remains poorly understood. Here we employed geometric beam theory coupled with the effective viscous force to derive a dynamic model for a rotary tongue hair deflection in a viscous fluid. Considering deflection of the tongue hair, we rationalized the nectar capture rate by taking Bombus terrestris as a model system. When the nectar concentration increases from 20% to 70%, the nectar capture rate declines by 87%, indicating that hair erection is more severely impeded in thicker nectar. Based on this model, we predicted an optimal hair length with which the bee can reach the maximum nectar capture rate. This work may provide a new theoretical framework for quantifying viscous liquid transport by hairy surfaces and shed light on design methodologies for fluid transport devices using hairy beds.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3