Trichoid sensilla on honey bee proboscises as inspiration for micro-viscometers

Author:

Liao Caiying,Amador Guillermo J,Liu Xuhan,Wu ZhigangORCID,Wu JianingORCID

Abstract

Abstract Sensing physical properties of liquids, such as viscosity, is of great significance for both biological organisms and industrial applications. For terrestrial organisms feeding on liquids, such as honey bees that forage nectar, sensing viscosity may help to determine the quality of food sources. Previous experiments showed that honey bees exhibit strong preferences for less viscous nectar; however, the physical mechanism underlying how they perceive viscosity remains unexplored. In this study, we propose that the western honey bee (Apis mellifera L.) is capable of distinguishing viscosity using the slender trichoid sensilla emerging from a ball and socket-like joint on the proboscis. Observations of the trichoid sensilla using transmission electron microscopy reveal physical characteristics that are typical of mechanosensory structures. Additionally, we found that bees actively alter the rate at which they feed based on the liquid’s viscosity and not its sugar content, hinting at their sensing of viscosity. Through mathematical modeling, we found that the sensitivity of the biological viscometer was determined by its length, and the optimal sensitivity for a western honey bee occurs when the tongue interacts with nectar with a viscosity of 4.2 mPa·s, coinciding with the viscosities typically found in the wild. Our findings broaden insights into how honey bees adapt to varying-viscosity nectar from the perspective of mechanical sensing, and how the bee-flower partnership may be based around the optimal nectar viscosity for feeding. By understanding how bees may sense viscosity at the micrometer scale, we may motivate new technologies for micro-viscometers.

Funder

National Natural Science Foundation of China

Popularization of Scientific and Technological Innovation of Guangdong Province

Shenzhen Science and Technology Program

Bairen Plan

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3