Abstract
Abstract
Designing resilient actuators is a challenge for industry, in part because an index for resilience has yet to be established. In this work, several definitions of resilience are analysed and, on the basis of this, an index quantifying resilience for actuators is proposed. This index does indeed allow for the resilience computation of a wide range of manufactured and biological actuators to be compared. The two manufactured actuators chosen as iconic models are a hydraulic cylinder and a bio-inspired McKibben muscle, and these are shown not to be resilient by design. In addition, two biological actuators likely to be resilient were also analysed. The pulvinus resilience index shows that it is partly resilient depending on damage location. But the most promising is the skeletal muscle, which has been shown to be highly resilient. Finally, the bio-inspired roots of resilience are discussed: resilience may originate from multi-scale structural design.
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献