Abstract
Abstract
Fish robots have many possible applications in exploration, industry, research, and continue to increase in design complexity, control, and the behaviors they can complete. Maneuverability is an important metric of fish robot performance, with several strategies being implemented. By far the most common control scheme for fish robot maneuvers is an offset control scheme, wherein the robot’s steady swimming is controlled by sinusoidal function and turns are generated biasing bending to one side or another. An early bio-inspired turn control scheme is based on the C-start escape response observed in live fish. We developed a control scheme that is based on the kinematics of routine maneuvers in live fish that we call the ‘pulse’, which is a pattern of increasing and decreasing curvature that propagates down the body. This pattern of curvature is consistent across a wide range of turn types and can be described with a limited number of variables. We compared the performance of turns using each of these three control schemes across a range of durations and bending amplitudes. We found that C-start and offset turns had the highest heading changes for a given set of inputs, whereas the bio-inspired pulse turns had the highest linear accelerations for a given set of inputs. However, pulses shift the conceptualization of swimming away from it being a continuous behavior towards it being an intermittent behavior that is built by combining individual bending events. Our bio-inspired pulse control scheme has the potential to increase the behavioral flexibility of bio-inspired robotic fish and solve some of the problems associated with integrating different swimming behaviors, despite lower maximal turning performance.
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献