Fluid drag reduction by penguin-mimetic laser-ablated riblets with yaw angles

Author:

Saito RyosukeORCID,Yamasaki TakeshiORCID,Tanaka HirotoORCID

Abstract

Abstract The bodies of penguins, which swim underwater to forage, are densely covered with feathers, in which the barbs are oriented in the longitudinal direction. We hypothesize that these barbs act as riblets and reduce friction drag during swimming. Considering various real-world swim conditions, the drag reduction effect is expected to be robust against changes in the flow speed and yaw angle relative to the flow. To test this hypothesis, we created trapezoidal riblets based on the morphology of these barbs and measured the drag of flat plates with these fabricated riblets in a water tunnel. The spacing, width, and height of the barbs were found to be approximately 100, 60, and 30 μm, respectively. This spacing resulted in a nondimensional spacing s + of 5.5 for a typical penguin swimming speed of 1.4 m s−1. We fabricated four types of riblets on polyimide films by ultraviolet laser ablation. The first was a small-scale riblet for which the spacing was decreased to 41 μm to simulate the surface flow condition of the usual and slower swim behaviors in our water tunnel. The other three were manufactured to the actual scale of real barbs (spacing of 100 μm) with three different rib ridge widths: 10, 25, and 50 μm. Yaw angles of 0°, 15°, 30°, and 45° were also tested with the actual-scale riblets. The drag reduction rate of the small-scale riblet was maximized to 1.97% by the smallest s + of 1.59. For all three actual-scale riblets, increasing the yaw angle from zero to 15° enhanced the drag reduction rate for the full range of s + up to 13.5. The narrow-ridge riblet reduced drag at an even higher yaw angle of 45°, but the drag increased with zero yaw angle. Overall, the medium-ridge riblet, which was representative of the barbs, was well-balanced.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3