Swimming in density-stratified fluid: study on a flapping foil

Author:

Kandel Prabal,Deng JianORCID

Abstract

Abstract It is of interest to investigate how a swimming animal performs in a density-stratified fluid. This paper studies a simplified swimmer, a pitching NACA0015 airfoil, considering its locomotion in both homogeneous, or unstratified, and stratified fluid flows. A direct comparison is made between these two conditions through two-dimensional numerical simulations. Our numerical results show that the stratification modifies the dynamics of the pitching foil in both its wake structures and the drag force, or thrust, as well as its propulsive performance. We suggest that the effects of stratification on flapping performance or propulsive efficiency can be categorized according to the Froude number, or the level of stratification. First, in the range of high Froude numbers, notable modification of the flow structure can be observed, which however does not greatly affect the propulsive performance. Second, at a very low Froude number, i.e., Fr = 1, the propulsive efficiency drops markedly compared to its homogeneous counterpart, attributed to the pronounced internal waves induced by the strong stratification. Moreover, at a moderate Froude number Fr = 2, we find an increase in the propulsive efficiency, which can be explained by the unique variation in the wake structure. At A D = 2.50, the propulsive efficiency peaks at Fr = 2, with its efficiency 18.3% higher than its homogeneous counterpart, exhibiting a favourable influence of the stratification on a swimmer.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3