A review of linkage mechanisms in animal joints and related bioinspired designs

Author:

Burgess StuartORCID

Abstract

Abstract This paper presents a review of biological mechanical linkage mechanisms. One purpose is to identify the range of kinematic functions that they are able to perform. A second purpose is to review progress in bioinspired designs. Ten different linkage mechanisms are presented. They are chosen because they cover a wide range of functionality and because they have potential for bioinspired design. Linkage mechanisms enable animal joints to perform highly sophisticated and optimised motions. A key function of animal linkage mechanisms is the optimisation of actuator location and mechanical advantage. This is crucially important for animals where space is highly constrained. Many of the design features used by engineers in linkage mechanisms are seen in nature, such as short coupler links, extended bars, elastic energy storage and latch mechanisms. However, animal joints contain some features rarely seen in engineering such as integrated cam and linkage mechanisms, nonplanar four-bar mechanisms, resonant hinges and highly redundant actuators. The extreme performance of animal joints together with the unusual design features makes them an important area of investigation for bioinspired designs. Whilst there has been significant progress in bioinspiration, there is the potential for more, especially in robotics where compactness is a key design driver.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3