Coactivation in Symmetric Four-Bar Mechanisms Antagonistically Actuated by Cables

Author:

Muralidharan Vimalesh1,Chevallereau Christine1,Wenger Philippe1

Affiliation:

1. Nantes Universite, Ecole Centrale de Nantes, CNRS, LS2N 44321 Nantes , France

Abstract

Abstract In biological systems, the joints are actuated antagonistically by muscles that can be moved coherently to achieve the desired displacement and coactivated with appropriate forces to vary joint stiffness. Inspired by this, there is an interest in developing bio-inspired robots suitable for low- and high-stiffness tasks. Mechanisms actuated by antagonist cables can be a reasonable approximation of biological joints. A study on the anti-parallelogram mechanism showed that the antagonistic forces (>0) positively influence its stiffness, similar to the biological joints. This work investigates more general symmetric four-bar mechanisms with crossed/non-crossed limbs and top and base bars of unequal lengths for this property. First, the cables are attached between the two unconnected pivot pairs in the four-bar mechanism, and their limits of movement are presented. Inside these limits, we show that the cable forces have a positive (resp. negative) influence on the stiffness of the mechanism when its limbs are crossed (resp. non-crossed). These results are validated experimentally in all cases. Subsequently, we consider alternate cable attachments for the mechanisms with non-crossed limbs to achieve coactivation. Examples show that coactivation is possible in these mechanisms but comes at the cost of a diminished range of movement. Among all the four-bar mechanisms considered, the anti-parallelogram mechanism offers the largest orientation range of (−π,π) for the top bar with respect to its base while providing coactivation and is thus the best choice.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Simple Revolute Joint with Coactivation Principle;Mechanisms and Machine Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3