Abstract
Abstract
In this paper, the applicability and accuracy of high-fidelity experimental and numerical approaches in the analysis of three-dimensional flapping (revolving and pitching) wings operating under hovering flight conditions, i.e. where unsteady and three-dimensional rotational effects are strong, are assessed. Numerical simulations are then used to explore the role of mass and frequency ratios on aerodynamic performance, wing dynamics and flow physics. It is shown that time-averaged lift increases with frequency ratio, up to a certain limit that depends on mass ratio and beyond which upward wing bending and flexibility induced phase lag between revolving an pitching motions at stroke reversal become strong and contribute to phases of negative lift that counterbalances the initial lift increase. This wing dynamics, which is dominated by spanwise bending, also affects wing–wake interactions and, in turn, leading edge vortex formation.
Funder
H2020 Societal Challenges
CPER FEDER Nouvelle Acquitaine
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献