Stochastic interpolation of sparsely sampled time series by a superstatistical random process and its synthesis in Fourier and wavelet space

Author:

Lübke JeremiahORCID,Friedrich JanORCID,Grauer RainerORCID

Abstract

Abstract We present a novel method for stochastic interpolation of sparsely sampled time signals based on a superstatistical random process generated from a multivariate Gaussian scale mixture. In comparison to other stochastic interpolation methods such as Gaussian process regression, our method possesses strong multifractal properties and is thus applicable to a broad range of real-world time series, e.g. from solar wind or atmospheric turbulence. Furthermore, we provide a sampling algorithm in terms of a mixing procedure that consists of generating a 1 + 1 -dimensional field u ( t , ξ ) , where each Gaussian component u ξ ( t ) is synthesized with identical underlying noise but different covariance function C ξ ( t , s ) parameterized by a log-normally distributed parameter ξ. Due to the Gaussianity of each component u ξ ( t ) , we can exploit standard sampling algorithms such as Fourier or wavelet methods and, most importantly, methods to constrain the process on the sparse measurement points. The scale mixture u(t) is then initialized by assigning each point in time t a ξ ( t ) and therefore a specific value from u ( t , ξ ) , where the time-dependent parameter ξ ( t ) follows a log-normal process with a large correlation time scale compared to the correlation time of u ( t , ξ ) . We juxtapose Fourier and wavelet methods and show that a multiwavelet-based hierarchical approximation of the interpolating paths, which produce a sparse covariance structure, provide an adequate method to locally interpolate large and sparse datasets.

Funder

Bundesministerium für Wirtschaft und Technologie

Alexander von Humboldt-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3