Outlier mining in high-dimensional data using the Jensen–Shannon divergence and graph structure analysis

Author:

Toledo Alex S OORCID,Silini Riccardo,Carpi Laura C,Masoller CristinaORCID

Abstract

AbstractReliable anomaly/outlier detection algorithms have practical applications in many fields. For instance, anomaly detection allows to filter and clean the data used to train machine learning algorithms, improving their performance. However, outlier mining is challenging when the data is high-dimensional, and different approaches have been proposed for different types of data (temporal, spatial, network, etc). Here we propose a methodology to mine outliers in generic datasets in which it is possible to define a meaningful distance between elements of the dataset. The methodology is based on defining a fully connected, undirected graph, where the nodes are the elements of the dataset and the links have weights that are the distances between the nodes. Outlier scores are defined by analyzing the structure of the graph, in particular, by using the Jensen–Shannon (JS) divergence to compare the distributions of weights of different nodes. We demonstrate the method using a publicly available database of credit-card transactions, where some of the transactions are labeled as frauds. We compare with the performance obtained when using Euclidean distances and graph percolation, and show that the JS divergence leads to performance improvement, but increases the computational cost.

Funder

Ministerio de Ciencia e Innovación

European Commission

Institució Catalana de Recerca i Estudis Avançats

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Reference20 articles.

1. Anomaly detection: a survey;Chandola;ACM Comput. Surv.,2009

2. Graph based anomaly detection and description: a survey;Akoglu;Data Min. Knowl. Discov.,2015

3. Progress in outlier detection techniques: a survey;Wang;IEEE Access,2019

4. Outlier detection: methods, models and classification;Boukerche;ACM Comput. Surv.,2020

5. Deep learning for anomaly detection: a review;Pang;ACM Comput. Surv.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3