Predicting future links with new nodes in temporal academic networks

Author:

Ran YijunORCID,Liu Si-Yuan,Yu Xiaoyao,Shang Ke-KeORCID,Jia TaoORCID

Abstract

Abstract Most real-world systems evolve over time in which entities and the interactions between entities are added and removed—new entities or relationships appear and old entities or relationships vanish. While most network evolutionary models can provide an iterative process for constructing global properties, they cannot capture the evolutionary mechanisms of real systems. Link prediction is hence proposed to predict future links which also can help us understand the evolution law of real systems. The aim of link prediction is to uncover missing links from known parts of the network or quantify the likelihood of the emergence of future links from current structures of the network. However, almost all existing studies ignored that old nodes tend to disappear and new nodes appear over time in real networks, especially in social networks. It is more challenging for link prediction since the new nodes do not have pre-existing structure information. To solve the temporal link prediction problems with new nodes, here we take into account nodal attribute similarity and the shortest path length, namely, ASSPL, to predict future links with new nodes. The results tested on scholar social network and academic funding networks show that it is highly effective and applicable for ASSPL in funding networks with time-evolving. Meanwhile, we make full use of an efficient parameter to exploit how network structure or nodal attribute has an impact on the performance of temporal link prediction. Finally, we find that nodal attributes and network structure complement each other well for predicting future links with new nodes in funding networks.

Funder

Major Project of the National Social Science Foundation of China

National Natural Science Foundation of China

Industry-University-Research Innovation Fund for Chinese Universities

China Scholarship Council

Social Science Foundation of China

Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3