Advances in actinide thin films: synthesis, properties, and future directions

Author:

Vallejo Kevin DORCID,Kabir Firoza,Poudel Narayan,Marianetti Chris AORCID,Hurley David H,Simmonds Paul JORCID,Dennett Cody AORCID,Gofryk KrzysztofORCID

Abstract

Abstract Actinide-based compounds exhibit unique physics due to the presence of 5f electrons, and serve in many cases as important technological materials. Targeted thin film synthesis of actinide materials has been successful in generating high-purity specimens in which to study individual physical phenomena. These films have enabled the study of the unique electron configuration, strong mass renormalization, and nuclear decay in actinide metals and compounds. The growth of these films, as well as their thermophysical, magnetic, and topological properties, have been studied in a range of chemistries, albeit far fewer than most classes of thin film systems. This relative scarcity is the result of limited source material availability and safety constraints associated with the handling of radioactive materials. Here, we review recent work on the synthesis and characterization of actinide-based thin films in detail, describing both synthesis methods and modeling techniques for these materials. We review reports on pyrometallurgical, solution-based, and vapor deposition methods. We highlight the current state-of-the-art in order to construct a path forward to higher quality actinide thin films and heterostructure devices.

Funder

EFRC TETI

INL LDRD

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference268 articles.

1. Nature of the 5f states in actinide metals;Moore;Rev. Mod. Phys.,2009

2. Anisotropic magnetization of PuAs, PuSb and PuBi single crystals;Mattenberger;J. Magn. Magn. Mater.,1986

3. Heavy-fermion systems;Stewart;Rev. Mod. Phys.,1984

4. Non-Fermi-liquid behavior in d- and f-electron metals;Stewart;Rev. Mod. Phys.,2001

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3