Development of a new microdosimetric biological weighting function for the RBE10 assessment in case of the V79 cell line exposed to ions from 1H to 238U

Author:

Parisi AlessioORCID,Sato Tatsuhiko,Matsuya Yusuke,Kase Yuki,Magrin GiulioORCID,Verona Claudio,Tran Linh,Rosenfeld AnatolyORCID,Bianchi Anna,Olko Pawel,Struelens Lara,Vanhavere Filip

Abstract

Abstract An improved biological weighting function (IBWF) is proposed to phenomenologically relate microdosimetric lineal energy probability density distributions with the relative biological effectiveness (RBE) for the in vitro clonogenic cell survival (surviving fraction = 10%) of the most commonly used mammalian cell line, i.e. the Chinese hamster lung fibroblasts (V79). The IBWF, intended as a simple and robust tool for a fast RBE assessment to compare different exposure conditions in particle therapy beams, was determined through an iterative global-fitting process aimed to minimize the average relative deviation between RBE calculations and literature in vitro data in case of exposure to various types of ions from 1H to 238U. By using a single particle- and energy- independent function, it was possible to establish an univocal correlation between lineal energy and clonogenic cell survival for particles spanning over an unrestricted linear energy transfer range of almost five orders of magnitude (0.2 keV µm−1 to 15 000 keV µm−1 in liquid water). The average deviation between IBWF-derived RBE values and the published in vitro data was ∼14%. The IBWF results were also compared with corresponding calculations (in vitro RBE10 for the V79 cell line) performed using the modified microdosimetric kinetic model (modified MKM). Furthermore, RBE values computed with the reference biological weighting function (BWF) for the in vivo early intestine tolerance in mice were included for comparison and to further explore potential correlations between the BWF results and the in vitro RBE as reported in previous studies. The results suggest that the modified MKM possess limitations in reproducing the experimental in vitro RBE10 for the V79 cell line in case of ions heavier than 20Ne. Furthermore, due to the different modelled endpoint, marked deviations were found between the RBE values assessed using the reference BWF and the IBWF for ions heavier than 2H. Finally, the IBWF was unchangingly applied to calculate RBE values by processing lineal energy density distributions experimentally measured with eight different microdosimeters in 19 1H and 12C beams at ten different facilities (eight clinical and two research ones). Despite the differences between the detectors, irradiation facilities, beam profiles (pristine or spread out Bragg peak), maximum beam energy, beam delivery (passive or active scanning), energy degradation system (water, PMMA, polyamide or low-density polyethylene), the obtained IBWF-based RBE trends were found to be in good agreement with the corresponding ones in case of computer-simulated microdosimetric spectra (average relative deviation equal to 0.8% and 5.7% for 1H and 12C ions respectively).

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3