Cell-cycle dependence on the biological effects of boron neutron capture therapy and its modification by polyvinyl alcohol

Author:

Matsuya Yusuke,Sato Tatsuhiko,Kusumoto Tamon,Yachi Yoshie,Seino Ryosuke,Miwa Misako,Ishikawa Masayori,Matsuyama Shigeo,Fukunaga Hisanori

Abstract

AbstractBoron neutron capture therapy (BNCT) is a unique radiotherapy of selectively eradicating tumor cells using boron compounds (e.g., 4-borono-l-phenylalanine [BPA]) that are heterogeneously taken up at the cellular level. Such heterogenicity potentially reduces the curative efficiency. However, the effects of temporospatial heterogenicity on cell killing remain unclear. With the technical combination of radiation track detector and biophysical simulations, this study revealed the cell cycle-dependent heterogenicity of BPA uptake and subsequent biological effects of BNCT on HeLa cells expressing fluorescent ubiquitination-based cell cycle indicators, as well as the modification effects of polyvinyl alcohol (PVA). The results showed that the BPA concentration in the S/G2/M phase was higher than that in the G1/S phase and that PVA enhances the biological effects both by improving the uptake and by canceling the heterogenicity. These findings might contribute to a maximization of therapeutic efficacy when BNCT is combined with PVA and/or cell cycle-specific anticancer agents.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3