Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy

Author:

Pastor-Serrano OscarORCID,Perkó ZoltánORCID

Abstract

Abstract Objective. Next generation online and real-time adaptive radiotherapy workflows require precise particle transport simulations in sub-second times, which is unfeasible with current analytical pencil beam algorithms (PBA) or Monte Carlo (MC) methods. We present a deep learning based millisecond speed dose calculation algorithm (DoTA) accurately predicting the dose deposited by mono-energetic proton pencil beams for arbitrary energies and patient geometries. Approach. Given the forward-scattering nature of protons, we frame 3D particle transport as modeling a sequence of 2D geometries in the beam’s eye view. DoTA combines convolutional neural networks extracting spatial features (e.g. tissue and density contrasts) with a transformer self-attention backbone that routes information between the sequence of geometry slices and a vector representing the beam’s energy, and is trained to predict low noise MC simulations of proton beamlets using 80 000 different head and neck, lung, and prostate geometries. Main results. Predicting beamlet doses in 5 ± 4.9 ms with a very high gamma pass rate of 99.37 ± 1.17% (1%, 3 mm) compared to the ground truth MC calculations, DoTA significantly improves upon analytical pencil beam algorithms both in precision and speed. Offering MC accuracy 100 times faster than PBAs for pencil beams, our model calculates full treatment plan doses in 10–15 s depending on the number of beamlets (800–2200 in our plans), achieving a 99.70 ± 0.14% (2%, 2 mm) gamma pass rate across 9 test patients. Significance. Outperforming all previous analytical pencil beam and deep learning based approaches, DoTA represents a new state of the art in data-driven dose calculation and can directly compete with the speed of even commercial GPU MC approaches. Providing the sub-second speed required for adaptive treatments, straightforward implementations could offer similar benefits to other steps of the radiotherapy workflow or other modalities such as helium or carbon treatments.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

KWF Kankerbestrijding

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference76 articles.

1. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach;Aerts;Nat. Commun.,2014

2. Data From NSCLC-Radiomics-Genomics;Aerts,2015

3. Online daily adaptive proton therapy;Albertini;The British Journal of Radiology,2020

4. Layer normalization;Ba,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3