A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy

Author:

Starke SebastianORCID,Kieslich AaronORCID,Palkowitsch MartinaORCID,Hennings Fabian,G C Troost Esther,Krause Mechthild,Bensberg Jona,Hahn Christian,Heinzelmann Feline,Bäumer ChristianORCID,Lühr ArminORCID,Timmermann Beate,Löck SteffenORCID

Abstract

Abstract Objective. This study explores the use of neural networks (NNs) as surrogate models for Monte-Carlo (MC) simulations in predicting the dose-averaged linear energy transfer (LET d ) of protons in proton-beam therapy based on the planned dose distribution and patient anatomy in the form of computed tomography (CT) images. As LET d is associated with variability in the relative biological effectiveness (RBE) of protons, we also evaluate the implications of using NN predictions for normal tissue complication probability (NTCP) models within a variable-RBE context. Approach. The predictive performance of three-dimensional NN architectures was evaluated using five-fold cross-validation on a cohort of brain tumor patients (n = 151). The best-performing model was identified and externally validated on patients from a different center (n = 107). LET d predictions were compared to MC-simulated results in clinically relevant regions of interest. We assessed the impact on NTCP models by leveraging LET d predictions to derive RBE-weighted doses, using the Wedenberg RBE model. Main results. We found NNs based solely on the planned dose distribution, i.e. without additional usage of CT images, can approximate MC-based LET d distributions. Root mean squared errors (RMSE) for the median LET d within the brain, brainstem, CTV, chiasm, lacrimal glands (ipsilateral/contralateral) and optic nerves (ipsilateral/contralateral) were 0.36, 0.87, 0.31, 0.73, 0.68, 1.04, 0.69 and 1.24 keV µm−1, respectively. Although model predictions showed statistically significant differences from MC outputs, these did not result in substantial changes in NTCP predictions, with RMSEs of at most 3.2 percentage points. Significance. The ability of NNs to predict LET d based solely on planned dose distributions suggests a viable alternative to compute-intensive MC simulations in a variable-RBE setting. This is particularly useful in scenarios where MC simulation data are unavailable, facilitating resource-constrained proton therapy treatment planning, retrospective patient data analysis and further investigations on the variability of proton RBE.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3