Abstract
Abstract
Objective. Real-time reconstruction of magnetic particle imaging (MPI) shows promising clinical applications. However, prevalent reconstruction methods are mainly based on serial iteration, which causes large delay in real-time reconstruction. In order to achieve lower latency in real-time MPI reconstruction, we propose a parallel method for accelerating the speed of reconstruction methods. Approach. The proposed method, named adaptive multi-frame parallel iterative method (AMPIM), enables the processing of multi-frame signals to multi-frame MPI images in parallel. To facilitate parallel computing, we further propose an acceleration strategy for parallel computation to improve the computational efficiency of our AMPIM. Main results. OpenMPIData was used to evaluate our AMPIM, and the results show that our AMPIM improves the reconstruction frame rate per second of real-time MPI reconstruction by two orders of magnitude compared to prevalent iterative algorithms including the Kaczmarz algorithm, the conjugate gradient normal residual algorithm, and the alternating direction method of multipliers algorithm. The reconstructed image using AMPIM has high contrast-to-noise with reducing artifacts. Significance. The AMPIM can parallelly optimize least squares problems with multiple right-hand sides by exploiting the dimension of the right-hand side. AMPIM has great potential for application in real-time MPI imaging with high imaging frame rate.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China under Grant
CAS Youth Innovation Promotion Association under Grant
Beijing Natural Science Foundation
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献