GPU-accelerated parallel image reconstruction strategies for magnetic particle imaging

Author:

Quelhas Klaus NORCID,Henn Mark-AlexanderORCID,Farias RicardoORCID,Tew Weston LORCID,Woods Solomon IORCID

Abstract

Abstract Objective. Image reconstruction is a fundamental step in magnetic particle imaging (MPI). One of the main challenges is the fact that the reconstructions are computationally intensive and time-consuming, so choosing an algorithm presents a compromise between accuracy and execution time, which depends on the application. This work proposes a method that provides both fast and accurate image reconstructions. Approach. Image reconstruction algorithms were implemented to be executed in parallel in graphics processing units (GPUs) using the CUDA framework. The calculation of the model-based MPI calibration matrix was also implemented in GPU to allow both fast and flexible reconstructions. Main results. The parallel algorithms were able to accelerate the reconstructions by up to about 6 , 100 times in comparison to the serial Kaczmarz algorithm executed in the CPU, allowing for real-time applications. Reconstructions using the OpenMPIData dataset validated the proposed algorithms and demonstrated that they are able to provide both fast and accurate reconstructions. The calculation of the calibration matrix was accelerated by up to about 37 times. Significance. The parallel algorithms proposed in this work can provide single-frame MPI reconstructions in real time, with frame rates greater than 100 frames per second. The parallel calculation of the calibration matrix can be combined with the parallel reconstruction to deliver images in less time than the serial Kaczmarz reconstruction, potentially eliminating the need of storing the calibration matrix in the main memory, and providing the flexibility of redefining scanning and reconstruction parameters during execution.

Funder

National Institute of Standards and Technology

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3