Model-based three-material decomposition in dual-energy CT using the volume conservation constraint

Author:

Liu Stephen ZORCID,Tivnan Matthew,Osgood Greg M,Siewerdsen Jeffrey H,Stayman J Webster,Zbijewski Wojciech

Abstract

Abstract Objective. We develop a model-based optimization algorithm for ‘one-step’ dual-energy (DE) CT decomposition of three materials directly from projection measurements. Approach. Since the three-material problem is inherently undetermined, we incorporate the volume conservation principle (VCP) as a pair of equality and nonnegativity constraints into the objective function of the recently reported model-based material decomposition (MBMD). An optimization algorithm (constrained MBMD, CMBMD) is derived that utilizes voxel-wise separability to partition the volume into a VCP-constrained region solved using interior-point iterations, and an unconstrained region (air surrounding the object, where VCP is violated) solved with conventional two-material MBMD. Constrained MBMD (CMBMD) is validated in simulations and experiments in application to bone composition measurements in the presence of metal hardware using DE cone-beam CT (CBCT). A kV-switching protocol with non-coinciding low- and high-energy (LE and HE) projections was assumed. CMBMD with decomposed base materials of cortical bone, fat, and metal (titanium, Ti) is compared to MBMD with (i) fat-bone and (ii) fat-Ti bases. Main results. Three-material CMBMD exhibits a substantial reduction in metal artifacts relative to the two-material MBMD implementations. The accuracies of cortical bone volume fraction estimates are markedly improved using CMBMD, with ∼5–10× lower normalized root mean squared error in simulations with anthropomorphic knee phantoms (depending on the complexity of the metal component) and ∼2–2.5× lower in an experimental test-bench study. Significance. In conclusion, we demonstrated one-step three-material decomposition of DE CT using volume conservation as an optimization constraint. The proposed method might be applicable to DE applications such as bone marrow edema imaging (fat-bone-water decomposition) or multi-contrast imaging, especially on CT/CBCT systems that do not provide coinciding LE and HE ray paths required for conventional projection-domain DE decomposition.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3