Data-driven, energy-based method for estimation of scattered events in positron emission tomography

Author:

Efthimiou NikosORCID,Karp Joel S,Surti Suleman

Abstract

Abstract Objective. Scattered events add bias in the reconstructed positron emission tomography (PET) images. Our objective is the accurate estimation of the scatter distribution, required for an effective scatter correction. Approach. In this paper, we propose a practical energy-based (EB) scatter estimation method that uses the marked difference between the energy distribution of the non-scattered and scattered events in the presence of randoms. In contrast to previous EB methods, we model the unscattered events using data obtained from measured point sources. Main results. We demonstrate feasibility using Monte Carlo simulated as well as experimental data acquired on the long axial field-of-view (FOV) PennPET EXPLORER scanner. Simulations show that the EB scatter estimated sinograms, for all phantoms, are in excellent agreement with the ground truth scatter distribution, known from the simulated data. Using the standard NEMA image quality (IQ) phantom we find that both the EB and single scatter simulation (SSS) provide good contrast recovery values. However, the EB correction gives better lung residuals. Significance. Application of the EB method on measured data showed, that the proposed method can be successfully translated to real-world PET scanners. When applied to a 20 cm diameter ×20 cm long cylindrical phantom the EB and SSS algorithms demonstrated very similar performance. However, on a larger 35 cm × 30 cm long cylinder the EB can better account for increased multiple scattering and out-of-FOV activity, providing more uniform images with 12%–36% reduced background variability. In typical PET ring sizes, the EB estimation can be performed in a matter of a few seconds compared to the several minutes needed for SSS, leading to efficiency advantages over the SSS implementation. as well.

Funder

National Institute of Biomedical Imaging and Bioengineering

Center for Strategic Scientific Initiatives, National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3