A thick semi-monolithic scintillator detector for clinical PET scanners

Author:

Zhang Chunhui,Wang Xiaohui,Sun Mingdao,Kuang ZhonghuaORCID,Zhang Xianming,Ren Ning,Wu San,Sang Ziru,Sun Tao,Hu ZhanliORCID,Yang Yongfeng,Liu Zheng

Abstract

Abstract Both monolithic and semi-monolithic scintillator positron emission tomography (PET) detectors can measure the depth of interaction with single-ended readout. Usually scintillators with a thickness of 10 mm or less are used since the position resolutions of the detectors degrade as the scintillator thickness increases. In this work, the performance of a 20 mm thick long rectangular semi-monolithic scintillator PET detector was measured by using both single-ended and dual-ended readouts with silicon photomultiplier (SiPM) arrays to provide a high detection efficiency. The semi-monolithic scintillator detector consists of nine lutetium–yttrium oxyorthosilicate slices measuring 1.37 × 51.2 × 20 mm3 with erythrocyte sedimentation rate foils of 0.065 mm thickness in between the slices. The SiPM array at each end of the scintillator detector consists of 16 × 4 SiPMs with a pixel size of 3.0 × 3.0 mm2 and a pitch of 3.2 mm. The 64 signals of each SiPM array are processed by using the TOFPET2 application-specific integrated circuit individually. All but the edge slices can be clearly resolved for the detectors with both single-ended and dual-ended readouts. The single-ended readout detector provides an average full width at half maximum (FWHM) Y (continuous direction) position resolution of 2.43 mm, Z (depth direction) position resolution of 4.77 mm, energy resolution of 25.7% and timing resolution of 779 ps. The dual-ended readout detector significantly improves the Y and Z position resolutions, slightly improves the energy and timing resolution at the cost of two photodetectors required for one detector module and provides an average FWHM Y position resolution of 1.97 mm, Z position resolution of 2.60 mm, energy resolution of 21.7% and timing resolution of 718 ps. The energy and timing resolution of the semi-monolithic scintillator detector in this work are worse than those of the segmented scintillator array detector and need to be further improved. The semi-monolithic scintillator detector described in this work reduces costs as compared to the traditional segmented scintillator array detector and reduces the edge effect as compared to the monolithic scintillator detector.

Funder

Chinese Academy of Sciences Engineering Laboratory for Medical Imaging Technology and Equipment

Scientific Instrument Innovation Team of Chinese Academy of Sciences

Basic Research Program of Shenzhen

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3