An accurate probabilistic model with detector resolution and Doppler broadening correction in list-mode MLEM reconstruction for Compton camera

Author:

Wu ChuanpengORCID,Zhang Siyuan,Li LiangORCID

Abstract

Abstract Objective. The Compton cameras have been researched for medical applications and radioactive material detection. It is challenging for the Compton camera to realize high-resolution reconstruction when the incident photon energy is below 200 keV. However, multiple kinds of nuclear medical radionuclides are in this energy range, such as 201Tl, 67Ga, 99mTc, and 123I. In this work, we propose an improved probabilistic model with correction of detector energy resolution, detector spatial resolution, and Doppler broadening effect. The proposed model is used for numerical calculation of the system matrix in the list-mode maximum likelihood expectation maximization (LM-MLEM) algorithm. Approach. The model can improve the imaging resolution of LM-MLEM reconstruction by taking Doppler broadening effect into account. It performs well, especially in the following situations: low-energy photon incidence below 200 keV or (and) small distance between scattering and absorbing positions. Main results. Firstly, three main factors that affect the angular resolution of the Compton camera are theoretically analyzed and quantitatively calculated. The results of the analysis indicate the necessity of including the Doppler broadening effect in the model. Secondly, the details and derivation of the proposed probabilistic model are described. Thirdly, both Monte Carlo (MC) simulations and experiments are carried out to verify the performance of the proposed algorithm. The simulations focus on the low-energy reconstruction in which 201Tl (70 keV) and 99mTc (141 keV) are simulated. And the experiments are based on a single-layer Compton camera composed of a Timepix3 detector. Significance. The results of the simulations and the Timepix3-based experiments are presented to verify the effectiveness of the proposed algorithm. The model improves the Compton imaging resolution when the photon energy is below 200 keV.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-layer Compton camera based on a 1 mm thick pixelated CDTE detectors;IOP Conference Series: Materials Science and Engineering;2024-05-01

2. Experimental study on Compton camera for boron neutron capture therapy applications;Scientific Reports;2023-12-18

3. Multi-View 3D Compton Image Reconstruction With a Generalized List-Mode MLEM Algorithm;2023 IEEE International Conference on Image Processing (ICIP);2023-10-08

4. First Demonstration of Compton Camera Used for X-Ray Fluorescence Imaging;IEEE Transactions on Medical Imaging;2023-05

5. Hybrid PET/Compton-camera imaging: an imager for the next generation;The European Physical Journal Plus;2023-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3