Abstract
Abstract
Objective. GEANT4-DNA can simulate radiation chemical yield (G-value) for radiolytic species such as the hydrated electron (
e
aq
−
) with the independent reaction times (IRT) method, however, only at room temperature and neutral pH. This work aims to modify the GEANT4-DNA source code to enable the calculation of G-values for radiolytic species at different temperatures and pH values. Approach. In the GEANT4-DNA source code, values of chemical parameters such as reaction rate constant, diffusion coefficient, Onsager radius, and water density were replaced by corresponding temperature-dependent polynomials. The initial concentration of hydrogen ion (H+)/hydronium ion (H3O+) was scaled for a desired pH using the relationship pH = –log10 [H+]. To validate our modifications, two sets of simulations were performed. (A) A water cube with 1.0 km sides and a pH of 7 was irradiated with an isotropic electron source of 1 MeV. The end time was 1 μs. The temperatures varied from 25 °C to 150 °C. (B) The same setup as (A) was used, however, the temperature was set to 25 °C while the pH varied from 5 to 9. The results were compared with published experimental and simulated work. Main results. The IRT method in GEANT4-DNA was successfully modified to simulate G-values for radiolytic species at different temperatures and pH values. Our temperature-dependent results agreed with experimental data within 0.64%–9.79%, and with simulated data within 3.52%–12.47%. The pH-dependent results agreed well with experimental data within 0.52% to 3.19% except at a pH of 5 (15.99%) and with simulated data within 4.40%–5.53%. The uncertainties were below ±0.20%. Overall our results agreed better with experimental than simulation data. Significance. Modifications in the GEANT4-DNA code enabled the calculation of G-values for radiolytic species at different temperatures and pH values.
Funder
Canada Research Chairs Programme
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献