Generalizable cone beam CT esophagus segmentation using physics-based data augmentation

Author:

Alam Sadegh RORCID,Li Tianfang,Zhang Pengpeng,Zhang Si-Yuan,Nadeem SaadORCID

Abstract

Abstract Automated segmentation of the esophagus is critical in image-guided/adaptive radiotherapy of lung cancer to minimize radiation-induced toxicities such as acute esophagitis. We have developed a semantic physics-based data augmentation method for segmenting the esophagus in both planning CT (pCT) and cone beam CT (CBCT) using 3D convolutional neural networks. One hundred and ninety-one cases with their pCTs and CBCTs from four independent datasets were used to train a modified 3D U-Net architecture and a multi-objective loss function specifically designed for soft-tissue organs such as the esophagus. Scatter artifacts and noises were extracted from week-1 CBCTs using a power-law adaptive histogram equalization method and induced to the corresponding pCT were reconstructed using CBCT reconstruction parameters. Moreover, we leveraged physics-based artifact induction in pCTs to drive the esophagus segmentation in real weekly CBCTs. Segmentations were evaluated using the geometric Dice coefficient and Hausdorff distance as well as dosimetrically using mean esophagus dose and D 5cc. Due to the physics-based data augmentation, our model trained just on the synthetic CBCTs was robust and generalizable enough to also produce state-of-the-art results on the pCTs and CBCTs, achieving Dice overlaps of 0.81 and 0.74, respectively. It is concluded that our physics-based data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities, eventually improving the accuracy of treatment setup and response analysis.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3