Deep learning based direct segmentation assisted by deformable image registration for cone-beam CT based auto-segmentation for adaptive radiotherapy

Author:

Liang XiaoORCID,Morgan Howard,Bai TiORCID,Dohopolski Michael,Nguyen DanORCID,Jiang Steve

Abstract

Abstract Cone-beam CT (CBCT)-based online adaptive radiotherapy calls for accurate auto-segmentation to reduce the time cost for physicians. However, deep learning (DL)-based direct segmentation of CBCT images is a challenging task, mainly due to the poor image quality and lack of well-labelled large training datasets. Deformable image registration (DIR) is often used to propagate the manual contours on the planning CT (pCT) of the same patient to CBCT. In this work, we undertake solving the problems mentioned above with the assistance of DIR. Our method consists of three main components. First, we use deformed pCT contours derived from multiple DIR methods between pCT and CBCT as pseudo labels for initial training of the DL-based direct segmentation model. Second, we use deformed pCT contours from another DIR algorithm as influencer volumes to define the region of interest for DL-based direct segmentation. Third, the initially trained DL model is further fine-tuned using a smaller set of true labels. Nine patients are used for model evaluation. We found that DL-based direct segmentation on CBCT without influencer volumes has much poorer performance compared to DIR-based segmentation. However, adding deformed pCT contours as influencer volumes in the direct segmentation network dramatically improves segmentation performance, reaching the accuracy level of DIR-based segmentation. The DL model with influencer volumes can be further improved through fine-tuning using a smaller set of true labels, achieving mean Dice similarity coefficient of 0.86, Hausdorff distance at the 95th percentile of 2.34 mm, and average surface distance of 0.56 mm. A DL-based direct CBCT segmentation model can be improved to outperform DIR-based segmentation models by using deformed pCT contours as pseudo labels and influencer volumes for initial training, and by using a smaller set of true labels for model fine tuning.

Funder

Varian Medical Systems Inc.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3