Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks

Author:

Lei YangORCID,Wang Tonghe,Tian Sibo,Fu Yabo,Patel Pretesh,Jani Ashesh B,Curran Walter J,Liu Tian,Yang XiaofengORCID

Abstract

Abstract The delineation of the prostate and organs-at-risk (OARs) is fundamental to prostate radiation treatment planning, but is currently labor-intensive and observer-dependent. We aimed to develop an automated computed tomography (CT)-based multi-organ (bladder, prostate, rectum, left and right femoral heads (RFHs)) segmentation method for prostate radiation therapy treatment planning. The proposed method uses synthetic MRIs (sMRIs) to offer superior soft-tissue information for male pelvic CT images. Cycle-consistent adversarial networks (CycleGAN) were used to generate CT-based sMRIs. Dual pyramid networks (DPNs) extracted features from both CTs and sMRIs. A deep attention strategy was integrated into the DPNs to select the most relevant features from both CTs and sMRIs to identify organ boundaries. The CT-based sMRI generated from our previously trained CycleGAN and its corresponding CT images were inputted to the proposed DPNs to provide complementary information for pelvic multi-organ segmentation. The proposed method was trained and evaluated using datasets from 140 patients with prostate cancer, and were then compared against state-of-art methods. The Dice similarity coefficients and mean surface distances between our results and ground truth were 0.95 ± 0.05, 1.16 ± 0.70 mm; 0.88 ± 0.08, 1.64 ± 1.26 mm; 0.90 ± 0.04, 1.27 ± 0.48 mm; 0.95 ± 0.04, 1.08 ± 1.29 mm; and 0.95 ± 0.04, 1.11 ± 1.49 mm for bladder, prostate, rectum, left and RFHs, respectively. Mean center of mass distances was within 3 mm for all organs. Our results performed significantly better than those of competing methods in most evaluation metrics. We demonstrated the feasibility of sMRI-aided DPNs for multi-organ segmentation on pelvic CT images, and its superiority over other networks. The proposed method could be used in routine prostate cancer radiotherapy treatment planning to rapidly segment the prostate and standard OARs.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3