A non-invasive reference-based method for imaging the cerebral metabolic rate of oxygen by PET/MR: theory and error analysis

Author:

Narciso LucasORCID,Ssali Tracy,Iida Hidehiro,St Lawrence Keith

Abstract

Abstract Positron emission tomography (PET) remains the gold standard for quantitative imaging of the cerebral metabolic rate of oxygen (CMRO2); however, it is an invasive and complex procedure that requires accounting for recirculating [15O]H2O (RW) and the cerebral blood volume (CBV). This study presents a non-invasive reference-based technique for imaging CMRO2 that was developed for PET/magnetic resonance imaging (MRI) with the goal of simplifying the PET procedure while maintaining its ability to quantify metabolism. The approach is to use whole-brain (WB) measurements of oxygen extraction fraction (OEF) and cerebral blood flow (CBF) to calibrate [15O]O2-PET data, thereby avoiding the need for invasive arterial sampling. Here we present the theoretical framework, along with error analyses, sensitivity to PET noise and inaccuracies in input parameters, and initial assessment on PET data acquired from healthy participants. Simulations showed that neglecting RW and CBV corrections caused errors in CMRO2 of less than ±10% for changes in regional OEF of ±25%. These predictions were supported by applying the reference-based approach to PET data, which resulted in remarkably similar CMRO2 images to those generated by analyzing the same data using a modeling approach that incorporated the arterial input functions and corrected for CBV contributions. Significant correlations were observed between regional CMRO2 values from the two techniques (slope = 1.00 ± 0.04, R 2 > 0.98) with no significant differences found for integration times of 3 and 5 min. In summary, results demonstrate the feasibility of producing quantitative CMRO2 images by PET/MRI without the need for invasive blood sampling.

Funder

Canadian Institutes of Health Research

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3