Impact of image pre-processing methods on computed tomography radiomics features in chronic obstructive pulmonary disease

Author:

Au Ryan CORCID,Tan Wan CORCID,Bourbeau JeanORCID,Hogg James CORCID,Kirby MirandaORCID

Abstract

Abstract Computed tomography (CT) imaging texture-based radiomics analysis can be used to assess chronic obstructive pulmonary disease (COPD). However, different image pre-processing methods are commonly used, and how these different methods impact radiomics features and lung disease assessment, is unknown. The purpose of this study was to develop an image pre-processing pipeline to investigate how various pre-processing combinations impact radiomics features and their use for COPD assessment. Spirometry and CT images were obtained from the multi-centered Canadian Cohort of Obstructive Lung Disease study. Participants were divided based on assessment site and were further dichotomized as No COPD or COPD within their participant groups. An image pre-processing pipeline was developed, calculating 32 grey level co-occurrence matrix radiomics features. The pipeline included lung segmentation, airway segmentation or no segmentation, image resampling or no resampling, and either no pre-processing, binning, edgmentation, or thresholding pre-processing techniques. A three-way analysis of variance was used for method comparison. A nested 10-fold cross validation using logistic regression and multiple linear regression models were constructed to classify COPD and assess correlation with lung function, respectively. Logistic regression performance was evaluated using the area under the receiver operating characteristic curve (AUC). A total of 1210 participants (Sites 1–8: No COPD: n = 447, COPD: n = 413; and Site 9: No COPD: n = 155, COPD: n = 195) were evaluated. Between the two participant groups, at least 16/32 features were different between airway segmentation/no segmentation (P ≤ 0.04), at least 29/32 features were different between no resampling/resampling (P ≤ 0.04), and 32/32 features were different between the pre-processing techniques (P < 0.0001). Features generated using the resampling/edgmentation and resampling/thresholding pre-processing combinations, regardless of airway segmentation, performed the best in COPD classification (AUC ≥ 0.718), and explained the most variance with lung function (R 2 ≥ 0.353). Therefore, the image pre-processing methods completed prior to CT radiomics feature extraction significantly impacted extracted features and their ability to assess COPD.

Funder

Canada Research Chairs

Parker B Francis Fellowship Program

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3