Strategy to implement a convolutional neural network based ideal model observer via transfer learning for multi-slice simulated breast CT images

Author:

Kim GihunORCID,Han MinahORCID,Baek Jongduk

Abstract

Abstract Objective. In this work, we propose a convolutional neural network (CNN)-based multi-slice ideal model observer using transfer learning (TL-CNN) to reduce the required number of training samples. Approach. To train model observers, we generate simulated breast CT image volumes that are reconstructed using the FeldkampDavisKress algorithm with a ramp and Hanning-weighted ramp filter. The observer performance is evaluated on the background-known-statistically (BKS)/signal-known-exactly task with a spherical signal, and the BKS/signal-known-statistically task with random signal generated by the stochastic grown method. We compare the detectability of the CNN-based model observer with that of conventional linear model observers for multi-slice images (i.e. a multi-slice channelized Hotelling observer (CHO) and volumetric CHO). We also analyze the detectability of the TL-CNN for different numbers of training samples to examine its performance robustness to a limited number of training samples. To further analyze the effectiveness of transfer learning, we calculate the correlation coefficients of filter weights in the CNN-based multi-slice model observer. Main results. When using transfer learning for the CNN-based multi-slice ideal model observer, the TL-CNN provides the same performance with a 91.7% reduction in the number of training samples compared to that when transfer learning is not used. Moreover, compared to the conventional linear model observer, the proposed CNN-based multi-slice model observers achieve 45% higher detectability in the signal-known-statistically detection tasks and 13% higher detectability in the SKE detection tasks. In correlation coefficient analysis, it is observed that the filters in most of the layers are highly correlated, demonstrating the effectiveness of the transfer learning for multi-slice model observer training. Significance. Deep learning-based model observers require large numbers of training samples, and the required number of training samples increases as the dimensions of the image (i.e. the number of slices) increase. With applying transfer learning, the required number of training samples is significantly reduced without performance drop.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference48 articles.

1. Human-and model-observer performance in ramp-spectrum noise: effects of regularization and object variability;Abbey;J. Opt. Soc. Am. A,2001

2. Bayesian detection of random signals on random backgrounds;Barrett,1997

3. Technique factors and their relationship to radiation dose in pendant geometry breast ct;Boone;Med. Phys.,2005

4. Mammographic structure: data preparation and spatial statistics analysis, Medical imaging 1999: image processing;Burgess;Int. Soc. Opt. Photon.,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3