Impact of acquisition time and misregistration with CT on data-driven gated PET

Author:

Thomas M AllanORCID,Meier Joseph GORCID,Mawlawi Osama R,Sun Peng,Pan Tinsu

Abstract

Abstract Objective. Data-driven gating (DDG) can address patient motion issues and enhance PET quantification but suffers from increased image noise from utilization of <100% of PET data. Misregistration between DDG-PET and CT may also occur, altering the potential benefits of gating. Here, the effects of PET acquisition time and CT misregistration were assessed with a combined DDG-PET/DDG-CT technique. Approach. In the primary PET bed with lesions of interest and likely respiratory motion effects, PET acquisition time was extended to 12 min and a low-dose cine CT was acquired to enable DDG-CT. Retrospective reconstructions were created for both non-gated (NG) and DDG-PET using 30 s to 12 min of PET data. Both the standard helical CT and DDG-CT were used for attenuation correction of DDG-PET data. SUVmax, SUVpeak, and CNR were compared for 45 lesions in the liver and lung from 27 cases. Main results. For both NG-PET (p = 0.0041) and DDG-PET (p = 0.0028), only the 30 s acquisition time showed clear SUVmax bias relative to the 3 min clinical standard. SUVpeak showed no bias at any change in acquisition time. DDG-PET alone increased SUVmax by 15 ± 20% (p < 0.0001), then was increased further by an additional 15 ± 29% (p = 0.0007) with DDG-PET/CT. Both 3 min and 6 min DDG-PET had lesion CNR statistically equivalent to 3 min NG-PET, but then increased at 12 min by 28 ± 48% (p = 0.0022). DDG-PET/CT at 6 min had comparable counts to 3 min NG-PET, but significantly increased CNR by 39 ± 46% (p < 0.0001). Significance. 50% counts DDG-PET did not lead to inaccurate or biased SUV—increased SUV resulted from gating. Improved registration from DDG-CT was equally as important as motion correction with DDG-PET for increasing SUV in DDG-PET/CT. Lesion detectability could be significantly improved when DDG-PET used equivalent counts to NG-PET, but only when combined with DDG-CT in DDG-PET/CT.

Funder

National Heart, Lung, and Blood Institute

National Institute of Biomedical Imaging and Bioengineering

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3