A new DOSXYZnrc method for Monte Carlo simulations of 4D dose distributions

Author:

Su S,Atwal P,Lobo J,Duzenli C,Popescu I A

Abstract

Abstract The purpose of this study is to present a novel method for generating Monte Carlo 4D dose distributions in a single DOSXYZnrc simulation. During a standard simulation, individual energy deposition events are summed up to generate a 3D dose distribution and their associated temporal information is discarded. This means that in order to determine dose distributions as a function of time, separate simulations would have to be run for each interval of interest. Consequently, it has not been clinically feasible until now to routinely perform Monte Carlo simulations of dose rate, time-resolved dose accumulation, or electronic portal imaging devices (EPID) cine-mode images for volumetric modulated arc therapy (VMAT) plans. To overcome this limitation, we modified DOSXYZnrc and defined new input and output variables that allow a time-like parameter associated with each particle history to be binned in a user-defined manner. Under the new code version, computation times are the same as for a standard simulation, and the time-integrated 4D dose is identical to the standard 3D dose. We present a comparison of scintillator measurements and Monte Carlo simulations for dose rate during a VMAT beam delivery, a study of dose rate in a VMAT total body irradiation plan, and simulations of transit (through-patient) EPID cine-mode images.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference33 articles.

1. Geant4 - a simulation toolkit;Agostinelli;Nucl. Instrum. Meth. Phys. Res. A,2003

2. Recent developments in Geant4;Allison;Nucl. Instrum. Meth. Phys. Res. A,2016

3. Monte Carlo dosimetry of organ doses from a sweeping-beam total body irradiation technique: feasibility and first results;Burns,2018

4. Phase-Space Database for External Beam Radiotherapy;Capote,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3