Super-resolution biomedical imaging via reference-free statistical implicit neural representation

Author:

Ye SiqiORCID,Shen LiyueORCID,Islam Md TauhidulORCID,Xing Lei

Abstract

Abstract Objective. Supervised deep learning for image super-resolution (SR) has limitations in biomedical imaging due to the lack of large amounts of low- and high-resolution image pairs for model training. In this work, we propose a reference-free statistical implicit neural representation (INR) framework, which needs only a single or a few observed low-resolution (LR) image(s), to generate high-quality SR images. Approach. The framework models the statistics of the observed LR images via maximum likelihood estimation and trains the INR network to represent the latent high-resolution (HR) image as a continuous function in the spatial domain. The INR network is constructed as a coordinate-based multi-layer perceptron, whose inputs are image spatial coordinates and outputs are corresponding pixel intensities. The trained INR not only constrains functional smoothness but also allows an arbitrary scale in SR imaging. Main results. We demonstrate the efficacy of the proposed framework on various biomedical images, including computed tomography (CT), magnetic resonance imaging (MRI), fluorescence microscopy, and ultrasound images, across different SR magnification scales of 2×, 4×, and 8×. A limited number of LR images were used for each of the SR imaging tasks to show the potential of the proposed statistical INR framework. Significance. The proposed method provides an urgently needed unsupervised deep learning framework for numerous biomedical SR applications that lack HR reference images.

Funder

National Institutes of Health

Shanghai Jiao Tong University

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference59 articles.

1. Fast and accurate multi-frame super-resolution of satellite images;Anger;ISPRS Ann. Photogrammetry, Remote Sens. Spatial Inf. Sci.,2020

2. Computed tomography reconstruction using deep image prior and learned reconstruction methods;Baguer;Inverse Prob.,2020

3. Frequency bias in neural networks for input of non-uniform density;Basri,2020

4. Blind super-resolution kernel estimation using an internal-GAN;Bell-Kligler,2019

5. Super-resolution from image sequences—a review;Borman,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3