Haralick texture feature analysis for characterization of specific energy and absorbed dose distributions across cellular to patient length scales

Author:

Mansour Iymad RORCID,Thomson Rowan MORCID

Abstract

Abstract Objective. To investigate an approach for quantitative characterization of the spatial distribution of dosimetric data by introducing Haralick texture feature analysis in this context. Approach. Monte Carlo simulations are used to generate 3D arrays of dosimetric data for 2 scenarios: (1) cell-scale microdosimetry: specific energy (energy imparted per unit mass) in cell-scale targets irradiated by photon spectra (125I, 192Ir, 6 MV); (2) tumour-scale dosimetry: absorbed dose in voxels for idealized models of 125I permanent implant prostate brachytherapy, considering ‘TG186’ (realistic tissues including 0% to 5% intraprostatic calcifications; interseed attenuation) and ‘TG43’ (water model, no interseed attenuation) conditions. Five prominent Haralick features (homogeneity, contrast, correlation, local homogeneity, entropy) are computed and trends are interpreted using fundamental radiation physics. Main results. In the cell-scale scenario, the Haralick measures quantify differences in 3D specific energy distributions due to source spectra. For example, contrast and entropy are highest for 125I reflecting the large variations in specific energy in adjacent voxels (photoelectric interactions; relatively short range of electrons), while 6 MV has the highest homogeneity with smaller variations in specific energy between voxels (Compton scattering dominates; longer range of electrons). For the tumour-scale scenario, the Haralick measures quantify differences due to TG186/TG43 simulation conditions and the presence of calcifications. For example, as calcifications increase from 0% to 5%, contrast increases while correlation decreases, reflecting the large differences in absorbed dose in adjacent voxels (higher absorbed dose in voxels with calcification due to photoelectric interactions). Significance. Haralick texture analysis provides a quantitative method for the characterization of 3D dosimetric distributions across cellular to tumour length scales, with promising future applications including analyses of multiscale tissue models, patient-specific data, and comparison of treatment approaches.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3