A patient-specific hybrid phantom for calculating radiation dose and equivalent dose to the whole body

Author:

Kollitz ErikaORCID,Han HaeginORCID,Kim Chan Hyeong,Pinto MarcoORCID,Schwarz MarcoORCID,Riboldi Marco,Kamp Florian,Belka Claus,Newhauser Wayne,Dedes George,Parodi KatiaORCID

Abstract

Abstract Objective. As cancer survivorship increases, there is growing interest in minimizing the late effects of radiation therapy such as radiogenic second cancer, which may occur anywhere in the body. Assessing the risk of late effects requires knowledge of the dose distribution throughout the whole body, including regions far from the treatment field, beyond the typical anatomical extent of clinical computed tomography (CT) scans. Approach. A hybrid phantom was developed which consists of in-field patient CT images extracted from ground truth whole-body CT scans, out-of-field mesh phantoms scaled to basic patient measurements, and a blended transition region. Four of these hybrid phantoms were created, representing male and female patients receiving proton therapy treatment in pelvic and cranial sites. To assess the performance of the hybrid approach, we simulated treatments using the hybrid phantoms, the scaled and unscaled mesh phantoms, and the ground truth whole-body CTs. We calculated absorbed dose and equivalent dose in and outside of the treatment field, with a focus on neutrons induced in the patient by proton therapy. Proton and neutron dose was calculated using a general purpose Monte Carlo code. Main results. The hybrid phantom provided equal or superior accuracy in calculated organ dose and equivalent dose values relative to those obtained using the mesh phantoms in 78% in all selected organs and calculated dose quantities. Comparatively the default mesh and scaled mesh were equal or superior to the other phantoms in 21% and 28% of cases respectively. Significance. The proposed methodology for hybrid synthesis provides a tool for whole-body organ dose estimation for individual patients without requiring CT scans of their entire body. Such a capability would be useful for personalized assessment of late effects and risk-optimization of treatment plans.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3