Abstract
Abstract
Positron emission tomography (PET) images usually suffer from limited resolution and statistical uncertainties. However, a technique known as resolution modeling (RM) can be used to improve image quality by accurately modeling the system’s detection process within the iterative reconstruction. In this study, we present an accurate RM method in projection space based on a simulated multi-block detector response function (DRF) and evaluate it on the Siemens hybrid MR-BrainPET system. The DRF is obtained using GATE simulations that consider nearly all the possible annihilation photons from the field-of-view (FOV). Intrinsically, the multi-block DRF allows the block crosstalk to be modeled. The RM blurring kernel is further generated by factorizing the blurring matrix of one line-of-response (LOR) into two independent detector responses, which can then be addressed with the DRF. Such a kernel is shift-variant in 4D projection space without any distance or angle compression, and is integrated into the image reconstruction for the BrainPET insert with single instruction multiple data (SIMD) and multi-thread support. Evaluation of simulations and measured data demonstrate that the reconstruction with RM yields significantly improved resolutions and reduced mean squared error (MSE) values at different locations of the FOV, compared with reconstruction without RM. Furthermore, the shift-variant RM kernel models the varying blurring intensity for different LORs due to the depth-of-interaction (DOI) dependencies, thus avoiding severe edge artifacts in the images. Additionally, compared to RM in single-block mode, the multi-block mode shows significantly improved resolution and edge recovery at locations beyond 10 cm from the center of BrainPET insert in the transverse plane. However, the differences have been observed to be low for patient data between single-block and multi-block mode RM, due to the brain size and location as well as the geometry of the BrainPET insert. In conclusion, the RM method proposed in this study can yield better reconstructed images in terms of resolution and MSE value, compared to conventional reconstruction without RM.
Funder
China Scholarship Council
Subject
Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献