3D pyramidal densely connected network with cross-frame uncertainty guidance for intravascular ultrasound sequence segmentation

Author:

Xia Menghua,Yang Hongbo,Huang Yi,Qu Yanan,Zhou Guohui,Zhang Feng,Wang Yuanyuan,Guo YiORCID

Abstract

Abstract Objective. Automatic extraction of external elastic membrane border (EEM) and lumen-intima border (LIB) in intravascular ultrasound (IVUS) sequences aids atherosclerosis diagnosis. Existing IVUS segmentation networks ignored longitudinal relations among sequential images and neglected that IVUS images of different vascular conditions vary largely in intricacy and informativeness. As a result, they suffered from performance degradation in complicated parts in IVUS sequences. Approach. In this paper, we develop a 3D Pyramidal Densely-connected Network (PDN) with Adaptive learning and post-Correction guided by a novel cross-frame uncertainty (CFU). The proposed method is named PDN-AC. Specifically, the PDN enables the longitudinal information exploitation and the effective perception of size-varied vessel regions in IVUS samples, by pyramidally connecting multi-scale 3D dilated convolutions. Additionally, the CFU enhances the robustness of the method to complicated pathology from the frame-level (f-CFU) and pixel-level (p-CFU) via exploiting cross-frame knowledge in IVUS sequences. The f-CFU weighs the complexity of IVUS frames and steers an adaptive sampling during the PDN training. The p-CFU visualizes uncertain pixels probably misclassified by the PDN and guides an active contour-based post-correction. Main results. Human and animal experiments were conducted on IVUS datasets acquired from atherosclerosis patients and pigs. Results showed that the f-CFU weighted adaptive sampling reduced the Hausdorff distance (HD) by 10.53%/7.69% in EEM/LIB detection. Improvements achieved by the p-CFU guided post-correction were 2.94%/5.56%. Significance. The PDN-AC attained mean Jaccard values of 0.90/0.87 and HD values of 0.33/0.34 mm in EEM/LIB detection, preferable to state-of-the-art IVUS segmentation methods.

Funder

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3