Capsule networks for segmentation of small intravascular ultrasound image datasets

Author:

Bargsten LennartORCID,Raschka Silas,Schlaefer Alexander

Abstract

Abstract Purpose Intravascular ultrasound (IVUS) imaging is crucial for planning and performing percutaneous coronary interventions. Automatic segmentation of lumen and vessel wall in IVUS images can thus help streamlining the clinical workflow. State-of-the-art results in image segmentation are achieved with data-driven methods like convolutional neural networks (CNNs). These need large amounts of training data to perform sufficiently well but medical image datasets are often rather small. A possibility to overcome this problem is exploiting alternative network architectures like capsule networks. Methods We systematically investigated different capsule network architecture variants and optimized the performance on IVUS image segmentation. We then compared our capsule network with corresponding CNNs under varying amounts of training images and network parameters. Results Contrary to previous works, our capsule network performs best when doubling the number of capsule types after each downsampling stage, analogous to typical increase rates of feature maps in CNNs. Maximum improvements compared to the baseline CNNs are 20.6% in terms of the Dice coefficient and 87.2% in terms of the average Hausdorff distance. Conclusion Capsule networks are promising candidates when it comes to segmentation of small IVUS image datasets. We therefore assume that this also holds for ultrasound images in general. A reasonable next step would be the investigation of capsule networks for few- or even single-shot learning tasks.

Funder

European Regional Development Fund

Free and Hanseatic City of Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3