SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing

Author:

Bargsten LennartORCID,Schlaefer Alexander

Abstract

Abstract Purpose In the field of medical image analysis, deep learning methods gained huge attention over the last years. This can be explained by their often improved performance compared to classic explicit algorithms. In order to work well, they need large amounts of annotated data for supervised learning, but these are often not available in the case of medical image data. One way to overcome this limitation is to generate synthetic training data, e.g., by performing simulations to artificially augment the dataset. However, simulations require domain knowledge and are limited by the complexity of the underlying physical model. Another method to perform data augmentation is the generation of images by means of neural networks. Methods We developed a new algorithm for generation of synthetic medical images exhibiting speckle noise via generative adversarial networks (GANs). Key ingredient is a speckle layer, which can be incorporated into a neural network in order to add realistic and domain-dependent speckle. We call the resulting GAN architecture SpeckleGAN. Results We compared our new approach to an equivalent GAN without speckle layer. SpeckleGAN was able to generate ultrasound images with very crisp speckle patterns in contrast to the baseline GAN, even for small datasets of 50 images. SpeckleGAN outperformed the baseline GAN by up to 165 % with respect to the Fréchet Inception distance. For artery layer and lumen segmentation, a performance improvement of up to 4 % was obtained for small datasets, when these were augmented with images by SpeckleGAN. Conclusion SpeckleGAN facilitates the generation of realistic synthetic ultrasound images to augment small training sets for deep learning based image processing. Its application is not restricted to ultrasound images but could be used for every imaging methodology that produces images with speckle such as optical coherence tomography or radar.

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3