Abstract
Abstract
Purpose
In the field of medical image analysis, deep learning methods gained huge attention over the last years. This can be explained by their often improved performance compared to classic explicit algorithms. In order to work well, they need large amounts of annotated data for supervised learning, but these are often not available in the case of medical image data. One way to overcome this limitation is to generate synthetic training data, e.g., by performing simulations to artificially augment the dataset. However, simulations require domain knowledge and are limited by the complexity of the underlying physical model. Another method to perform data augmentation is the generation of images by means of neural networks.
Methods
We developed a new algorithm for generation of synthetic medical images exhibiting speckle noise via generative adversarial networks (GANs). Key ingredient is a speckle layer, which can be incorporated into a neural network in order to add realistic and domain-dependent speckle. We call the resulting GAN architecture SpeckleGAN.
Results
We compared our new approach to an equivalent GAN without speckle layer. SpeckleGAN was able to generate ultrasound images with very crisp speckle patterns in contrast to the baseline GAN, even for small datasets of 50 images. SpeckleGAN outperformed the baseline GAN by up to 165 % with respect to the Fréchet Inception distance. For artery layer and lumen segmentation, a performance improvement of up to 4 % was obtained for small datasets, when these were augmented with images by SpeckleGAN.
Conclusion
SpeckleGAN facilitates the generation of realistic synthetic ultrasound images to augment small training sets for deep learning based image processing. Its application is not restricted to ultrasound images but could be used for every imaging methodology that produces images with speckle such as optical coherence tomography or radar.
Funder
European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Reference22 articles.
1. Balocco S, Gatta C, Ciompi F, Wahle A, Radeva P, Carlier S, Unal G, Sanidas E, Mauri J, Carillo X, Kovarnik T, Wang CW, Chen HC, Exarchos TP, Fotiadis DI, Destrempes F, Cloutier G, Pujol O, Alberti M, Mendizabal-Ruiz EG, Rivera M, Aksoy T, Downe RW, Kakadiaris IA (2014) Standardized evaluation methodology and reference database for evaluating ivus image segmentation. Comput Med Imaging Graph 38(2):70–90
2. Burckhardt C (1978) Speckle in ultrasound b-mode scans. IEEE Trans Son Ultrason 25(1):1–6
3. China D, Mitra P, Sheet D (2017) Segmentation of lumen and external elastic laminae in intravascular ultrasound images using ultrasonic backscattering physics initialized multiscale random walks. In: Computer vision, graphics, and image processing. Springer, New York, pp 393–403
4. Deng J, Dong W, Socher R, Li L, Li K Li F-F: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255
5. Dubuisson MP, Jain A (1994) A modified hausdorff distance for object matching. In: Proceedings of the 12th international conference on pattern recognition, pp 566–568
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献