Artificial neural networks for positioning of gamma interactions in monolithic PET detectors

Author:

Decuyper MilanORCID,Stockhoff MarieleORCID,Vandenberghe Stefaan,Van Holen Roel

Abstract

Abstract To detect gamma rays with good spatial, timing and energy resolution while maintaining high sensitivity we need accurate and efficient algorithms to estimate the first gamma interaction position from the measured light distribution. Furthermore, monolithic detectors are investigated as an alternative to pixelated detectors due to increased sensitivity, resolution and intrinsic DOI encoding. Monolithic detectors, however, are challenging because of complicated calibration setups and edge effects. In this work, we evaluate the use of neural networks to estimate the 3D first (Compton or photoelectric) interaction position. Using optical simulation data of a 50 × 50 × 16 mm3 LYSO crystal, performance is evaluated as a function of network complexity (two to five hidden layers with 64 to 1024 neurons) and amount of training data (1000−8000 training events per calibration position). We identify and address the potential pitfall of overfitting on the training grid through evaluation on intermediate positions that are not in the training set. Additionally, the performance of neural networks is directly compared with nearest neighbour positioning. Optimal performance was achieved with a network containing three hidden layers of 256 neurons trained on 1000 events/position. For more complex networks, the performance degrades at intermediate positions and overfitting starts to occur. A median 3D positioning error of 0.77 mm and a 2D FWHM of 0.46 mm is obtained. This is a 17% improvement in terms of FWHM compared to the nearest neighbour algorithm. Evaluation only on events that are not Compton scattered results in a 3D positioning error of 0.40 mm and 2D FWHM of 0.42 mm. This reveals that Compton scatter results in a considerable increase of 93% in positioning error. This study demonstrates that very good spatial resolutions can be achieved with neural networks, superior to nearest neighbour positioning. However, potential overfitting on the training grid should be carefully evaluated.

Funder

Fonds Wetenschappelijk Onderzoek

Agentschap Innoveren en Ondernemen

Bijzonder Onderzoeksfonds

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3